Standard solutions: Prepare four solutions by dissolving glycerin in tetrahydrofuran, and diluting each with tetrahydrofuran as necessary, to obtain solutions having known concentrations of 0.4, 1.0, 2.0, and 4.0 mg/mL. Standard curve

Samples: Standard solutions

Plot: Record the chromatograms, and measure the responses for the glycerin peaks. Plot the glycerin peak responses obtained versus the concentration, in mg/mL, of glycerin in the Standard solutions.

Analysis

Sample: Sample solution

From the Standard curve, determine the glycerin concentration, in mg/mL, in the Sample solution. Calculate the percentage of free glycerin in the portion of Glyceryl Monooleate taken:

Result =
$$(C_s/C_U) \times 100$$

 C_{S} = concentration of glycerin in the Sample solution from the Standard curve (mg/mL)

concentration of Glyceryl Monooleate in the C_U Sample solution (mg/mL)

Acceptance criteria: NMT 6.0%

SPECIFIC TESTS

- FATS AND FIXED OILS, Acid Value (401): NMT 6.0, determined on 1.0 g
- FATS AND FIXED OILS, lodine Value (401): 65.0-95.0
- FATS AND FIXED OILS, Peroxide Value (401): NMT 12.0, determined on 2.0 g
- FATS AND FIXED OILS, Saponification Value (401): 150–175, determined on 2.0 g
- FATS AND FIXED OILS, Fatty Acid Composition (401): Glyceryl Monooleate exhibits the following composition profile of fatty acids (see Table 1), determined as directed in the chapter.

Table 1

Carbon-Chain Length	Number of Double Bonds	Percentage, NMT (%)
16	0	12.0
18	0	6.0
18	1	60.0
18	2	35.0
18	3	2.0
20	0	2.0
20	1	2.0

- WATER DETERMINATION, Method I (921): NMT 1.0%, using a mixture of methanol and methylene chloride (1:1) in place of methanol in the titration vessel
- ARTICLES OF BOTANICAL ORIGIN, Total Ash (561): NMT 0.1%

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers. No storage requirements specified.
- **LABELING:** The labeling indicates the nominal content of monoglycerides and the name and the concentration of any added antioxidant.
- USP REFERENCE STANDARDS (11) USP Glyceryl Monooleate 40% RS USP Glyceryl Monooleate 90% RS

Glyceryl Monostearate

Octadecanoic acid, monoester with 1,2,3-propanetriol; Monostearin [31566-31-1].

DEFINITION

Glyceryl Monostearate contains NLT 90.0% of monoglycerides of saturated fatty acids, chiefly glyceryl monostearate $(C_{21}H_{42}O_4)$ and glyceryl monopalmitate $(C_{19}H_{38}O_4)$. It may contain a suitable antioxidant.

ASSAY

PROCEDURE

Mobile phase: Tetrahydrofuran

Sample solution: 8 mg/mL of Glyceryl Monostearate in

tetrahydrofuran

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: Refractive index

Column: 7.5-mm \times 60-cm; 5- μ m 100-Å packing L21 **Temperature:** Column and detector temperatures are maintained at 40°.

[NOTE—Two or three 7.5-mm \times 30-cm L21 columns may be used in place of the one 60-cm column, provided that system suitability requirements are met. The column temperature may be lowered to ambient temperature, although working at 40° provides stable separation conditions and ensures better sample solubility.]

Flow rate: 1 mL/min Injection size: 40 µL System suitability

Sample: Sample solution
[NOTE—The relative retention times for triglycerides, diglycerides, monoglycerides, and glycerin are 0.77, 0.81, 0.86, and 1.0, respectively.]

Suitability requirements

Relative standard deviation: NMT 2.0%, determined from the monoglycerides peak

Analysis

Sample: Sample solution

Calculate the percentage of monoglycerides in the portion of Glyceryl Monostearate taken:

Result =
$$(r_U/r_T) \times 100$$

= peak response of the monoglycerides r_{U} = sum of all the glyceride peak responses Acceptance criteria: NLT 90.0% of monoglycerides of saturated fatty acids, chiefly C21H42O4 and C19H38O4

IMPURITIES

Inorganic Impurities

- RESIDUE ON IGNITION (281): NMT 0.5%
- ► HEAVY METALS, Method II (231): NMT 10 ppm

Organic Impurities

• PROCEDURE: LIMIT OF FREE GLYCERIN

Propionating reagent: Pyridine and propionic anhydride

Internal standard solution: 0.2 mg/mL of tributyrin in chloroform

Standard solution: Transfer 15 mg of glycerin and 50 mg of tributyrin to a glass-stoppered, 25-mL conical flask. Add 3 mL of *Propionating reagent*, and heat at 75° for 30 min. Volatilize the reagents with the aid of a stream of nitrogen at room temperature, and add 12 mL of chloroform. Dilute 1 mL of this mixture with chloroform to 20 mL.

Sample solution: Transfer 50 mg of Glyceryl Monostearate to a glass-stoppered, 25-mL conical flask. Add 5 mL of Internal standard solution by pipet, and mix to dissolve. Immerse the flask in a water bath, maintained at a temperature between 45° and 50°, and volatilize the chloroform with the aid of a stream of nitrogen. Add 3 mL of Propionating reagent, and heat at 75° for 30 min. Volatilize the reagents with the aid of a stream of nitrogen at room temperature, and add 5 mL of chloroform.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: GC

Detector: Flame ionization (under typical conditions) $\textbf{Column:} \ \ \text{4-mm} \times \text{2.4-m borosilicate glass, packed with}$ 2% liquid phase G16, on 80- to 100-mesh support S1A

Temperature Injector: 300° Détector: 310°

Column: The column is maintained isothermally at a

temperature between 190° and 200°.

Carrier gas: Helium Flow rate: 70 mL/min System suitability

Sample: Standard solution (6–10 injections)

Suitability requirements

Resolution: NLT 4.0 between derivatized glycerin and

Relative standard deviation: NMT 2.0% of the ratio of

their peak areas

Analysis

Samples: Standard solution and Sample solution Calculate the response factor, F:

$$F = (A_D/A_S) \times (W_S/W_D)$$

 A_D = peak area of tributyrin from the Standard

 \boldsymbol{A}_{S} = peak area of tripropionin from the Standard solution

W۹ = weight of glycerin in the Standard solution (mg) W_{D} = weight of tributyrin in the Standard solution (mg)

Calculate the percentage of glycerin in the portion of Glyceryl Monostearate taken:

Result =
$$(A_U/A_S) \times (W_D/W_U) \times F \times 100$$

= peak area of tripropionin in the Sample solution A_{U} = peak area of tributyrin in the Sample solution W_{D} = weight of tributyrin in 5 mL of *Internal standard* solution (mg)

 W_{U} = weight of Glyceryl Monostearate in the Sample solution (mg)

Acceptance criteria: NMT 1.2%

SPECIFIC TESTS

- MELTING RANGE OR TEMPERATURE, Class I (741): Does not melt below 55
- FATS AND FIXED OILS, Acid Value (401): NMT 6
- FATS AND FIXED OILS, Hydroxyl Value (401): 290-330
- FATS AND FIXED OILS, Iodine Value (401): NMT 3
- FATS AND FIXED OILS, Saponification Value (401): 150–165

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight, light-resistant
- **LABELING:** Label it to indicate the name and quantity of any added antioxidant.

Glycine—see Glycine General Monographs

Guar Gum

DEFINITION

Guar Gum is a gum obtained from the ground endosperms of Cyamopsis tetragonolobus (Linné) Taub. (Fam. Leguminosae).

It consists chiefly of a high molecular weight hydrocolloidal polysaccharide, composed of galactan and mannan units combined through glycosidic linkages, which may be described chemically as a galactomannan.

IDENTIFICATION

Sample: 2 g

Analysis: Place the Sample in a 400-mL beaker, and moisten it with 4 mL of isopropyl alcohol. Add 200 mL of cold water with vigorous stirring, and continue stirring until the Sample is completely and uniformly dispersed.

Acceptance criteria: An opalescent, viscous solution results.

• B.

Analysis: Transfer 100 mL of the solution prepared in *Identi*fication test A to a 400-mL beaker, heat in a boiling water bath for about 10 min, and cool.

Acceptance criteria: No appreciable increase in viscosity is produced. (Distinction from locust bean gum: see Reagents, Indicators, and Solutions—Reagents).

ASSAY

CONTENT OF GALACTOMANNANS

Analysis: Subtract from 100.0 the total percentages from the tests for Articles of Botanical Origin, Total Ash; Acid-Insoluble Matter; Protein; and Loss on Drying.

Acceptance criteria: NLT 66.0%

IMPURITIES

- ARSENIC, Method II (211): NMT 3 ppm
- **LEAD** (251)

Analysis: Prepare a Test Preparation as directed in the chapter, and use 10 mL of Diluted Standard Lead Solution (10 µg of Pb) for the test.

Acceptance criteria: NMT 10 ppm

HEAVY METALS, Method II (231): NMT 20 ppm

SPECIFIC TESTS

- ARTICLES OF BOTANICAL ORIGIN, Total Ash (561): NMT 1.5%
- **ACID-INSOLUBLE MATTER**

Sample: 1.5 g
Analysis: Transfer the Sample to a 250-mL beaker containing 150 mL of water and 1.5 mL of sulfuric acid. Cover the beaker with a watch glass, and heat the mixture on a steam bath for 6 h, rubbing down the wall of the beaker frequently with a rubber-tipped stirring rod, and replacing any water lost by evaporation. At the end of the 6-h heating period, add 500 mg of a suitable filter aid, and pass through a suitable tared, ashless filter. Wash the residue several times with hot water, dry the filter and its contents at 105° for 3 h, cool in a desiccator, and weigh. Determine the amount of acid-insoluble matter by subtracting the weight of the filter aid from that of the residue.

Acceptance criteria: NMT 7.0%

PROTEIN

Sample: 1.0 g

Analysis: Transfer the Sample to a 500-mL Kjeldahl flask, and proceed as directed in Nitrogen Determination (461), Method 1. Determine the percentage of nitrogen. Calculate the amount of protein by multiplying the percentage of nitrogen by 6.25

Acceptance criteria: NMT 10.0%

STARCH

Analysis: To a solution (1 in 10) of Guar Gum add a few drops of iodine TS.

Acceptance criteria: No blue color is produced.

Loss on Drying (731): Dry a sample at 105° for 5 h: it loses NMT 15.0% of its weight.